首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:On-line Learning with Malicious Noise and the Closure Algorithm
  • 本地全文:下载
  • 作者:Peter Auer ; Nicolo Cesa-Bianchi
  • 期刊名称:Electronic Colloquium on Computational Complexity
  • 印刷版ISSN:1433-8092
  • 出版年度:2000
  • 卷号:2000
  • 出版社:Universität Trier, Lehrstuhl für Theoretische Computer-Forschung
  • 摘要:We investigate a variant of the on-line learning model for classes of {0,1}-valued functions (concepts) in which the labels of a certain amount of the input instances are corrupted by adversarial noise. We propose an extension of a general learning strategy, known as "Closure Algorithm", to this noise model, and show a worst-case mistake bound for learning an arbitrary intersection-closed concept class. For several concept classes our extended Closure Algorithm is efficient and can tolerate a noise rate up to the information-theoretic upper bound. Finally, we show how to efficiently turn any algorithm for the on-line noise model into a learning algorithm for the PAC model with malicious noise.
国家哲学社会科学文献中心版权所有