首页    期刊浏览 2025年02月20日 星期四
登录注册

文章基本信息

  • 标题:A Selection Model for Longitudinal Data with Non-ignorable Non-monotone Missing Values
  • 本地全文:下载
  • 作者:Ahmed M. Gad
  • 期刊名称:Journal of Data Science
  • 印刷版ISSN:1680-743X
  • 电子版ISSN:1683-8602
  • 出版年度:2011
  • 卷号:9
  • 期号:2
  • 出版社:Tingmao Publish Company
  • 摘要:

    Missing values are not uncommon in longitudinal data studies.
    Missingness could be due to withdrawal from the study (dropout) or intermittent.
    The missing data mechanism is termed non-ignorable if the probability
    of missingness depends on the unobserved (missing) observations. This
    paper presents a model for continuous longitudinal data with non-ignorable
    non-monotone missing values. Two separate models, for the response and
    missingness, are assumed. The response is modeled as multivariate normal
    whereas the binomial model for missingness process. Parameters in the
    adopted model are estimated using the stochastic EM algorithm. The proposed
    model (approach) is then applied to an example from the International
    Breast Cancer Study Group.

  • 关键词:Intermittent missing; informative missing; selection models; the
国家哲学社会科学文献中心版权所有