首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:Exponential Time Complexity of the Permanent and the Tutte Polynomial
  • 本地全文:下载
  • 作者:Holger Dell ; Thore Husfeldt ; Martin Wahlén
  • 期刊名称:Electronic Colloquium on Computational Complexity
  • 印刷版ISSN:1433-8092
  • 出版年度:2010
  • 卷号:2010
  • 出版社:Universität Trier, Lehrstuhl für Theoretische Computer-Forschung
  • 摘要:The Exponential Time Hypothesis (ETH) says that deciding the satisfiability of n-variable 3-CNF formulas requires time exp((n)). We relax this hypothesis by introducing its counting version #ETH, namely that every algorithm that counts the satisfying assignments requires time exp((n)). We transfer the sparsification lemma for d-CNF formulas to the counting setting, which makes #ETH robust. Under this hypothesis, we show lower bounds for well-studied #P-hard problems: Computing the permanent of an nn matrix with m nonzero entries requires time exp((m)). Restricted to 01-matrices, the bound is exp((mlogm)) . Computing the Tutte polynomial of a multigraph with n vertices and m edges requires time exp((n)) at points (xy) with (x−1)(y−1)=1 and y01 . At points (x0) with x01 it requires time exp((n)), and if x=−2−3 , it requires time exp((m)). For simple graphs, the bound is exp((mlog3m)) .
  • 关键词:counting problems, Exponential Time Hypothesis, permanent, Tutte Polynomial
国家哲学社会科学文献中心版权所有