首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:: Biogenic Volatile Organic Compound Emissions from the Eurasian Taiga: Current Knowledge and Future Directions
  • 本地全文:下载
  • 作者:Rinne J ; Bäck J ; Hakola H
  • 期刊名称:Boreal Environment Research
  • 印刷版ISSN:1239-6095
  • 出版年度:2009
  • 卷号:14
  • 期号:04
  • 出版社:Finnish Limnological Society
  • 摘要:

    In this paper, the research conducted on the emissions of the biogenic volatile organic compounds (BVOCs) from the European boreal zone, or taiga, is reviewed. We highlight the main findings and the key gaps in our knowledge. Ecosystem scale BVOC emissions from the Eurasian taiga are observed to be relatively low as compared with those from some forest ecosystems in warmer climates. One of the distinctive features of the Eurasian taiga is the predominance of monoterpene emitting coniferous trees. Recent research indicates that in addition to evaporation from storage structures, part of the monoterpene emission of conifers originates directly from synthesis. Monoterpene emission from boreal deciduous trees originates mainly directly from synthesis. The boreal trees exhibit distinct intra-species variation in the monoterpene mixtures they emit. Important sources of isoprene in the Eurasian taiga include Norway spruce, open wetland ecosystems and some non-dominant woody species, such as European aspen and willows. Many boreal tree species also emit non-terpenoid compounds and highly reactive sesquiterpenes. The future challenges in the research on BVOC emissions from the Eurasian taiga include (i) quantification and understanding the non-terpenoid VOC emissions from the taiga ecosystems, (ii) bringing ecosystems in the eastern Eurasian taiga into the sphere of BVOC emission studies, (iii) establishing long-term ecosystem flux studies combined with plant physiological measurements, and (iv) integrating knowledge and research skills on BVOC synthesis, strorages and emissions, land cover changes and atmospheric processes in different spatial and temporal scales in order to better understand the impact of biosphere on atmospheric chemistry and composition in changing climate.

  • 关键词:Taiga;Biogenic Volatile Organic Compound;Volatile Organic Compounds;Forest Ecosystems;Recent Research;Deciduous Trees;Woody Species;Tree Species
国家哲学社会科学文献中心版权所有