期刊名称:Electronic Colloquium on Computational Complexity
印刷版ISSN:1433-8092
出版年度:2002
卷号:2002
出版社:Universität Trier, Lehrstuhl für Theoretische Computer-Forschung
摘要:A binary sequence A=A(0)A(1).... is called i.o. Turing-autoreducible if A is reducible to itself via an oracle Turing machine that never queries its oracle at the current input, outputs either A(x) or a don't-know symbol on any given input x, and outputs A(x) for infinitely many x. If in addition the oracle Turing machine terminates on all inputs and oracles, A is called i.o. truth-table-autoreducible. We obtain the somewhat counterintuitive result that every Martin-L"of random sequence, in fact even every rec-random or p-random sequence, is i.o. truth-table-autoreducible. Furthermore, we investigate the question of how dense the set of guessed bits can be when i.o. autoreducing a random sequence. We show that rec-random sequences are never i.o. truth-table-autoreducible such that the set of guessed bits has positive constant density in the limit, and that a similar assertion holds for Martin-L"of random sequences and i.o. Turing-autoreducibility. On the other hand, our main result asserts that for any rational-valued computable function r that goes non-ascendingly to zero, any rec-random sequence is i.o. truth-table-autoreducible such that on any prefix of length m at least a fraction of r(m) of the m bits in the prefix are guessed. We include a self-contained account of the hat problem, a puzzle that has received some attention outside of theoretical computer science. The hat problem asks for guessing bits of a finite sequence, thus illustrating the notion of i.o autoreducibility in a finite setting. The solution to the hat problem is then used as a module in the proofs of the positive results on i.o. autoreducibility.