首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Structural, Transitive and Latent Models for Biographic Fact Extraction
  • 本地全文:下载
  • 作者:Nikesh Garera ; David Yarowsky
  • 期刊名称:Conference on European Chapter of the Association for Computational Linguistics (EACL)
  • 出版年度:2009
  • 卷号:2009
  • 出版社:ACL Anthology
  • 摘要:This paper presents six novel approaches to biographic fact extraction that model structural, transitive and latent properties of biographical data. The ensemble of these proposed models substantially outperforms standard pattern-based biographic fact extraction methods and performance is further improved by modeling inter-attribute correlations and distributions over functions of attributes, achieving an average extraction accuracy of 80% over seven types of biographic attributes.
国家哲学社会科学文献中心版权所有