This paper presents the optimal regulator for a linear system with time delay in control input and a quadratic criterion. The optimal regulator equations are obtained using the duality principle, which is applied to the optimal filter for linear systems with time delay in observations. Performance of the obtained optimal regulator is verified in the illustrative example against the best linear regulator available for linear systems without delays. Simulation graphs and comparison tables demonstrating better performance of the obtained optimal regulator are included. The paper then presents a robustification algorithm for the obtained optimal regulator based on integral sliding mode compensation of disturbances. The general principles of the integral sliding mode compensator design are modified to yield the basic control algorithm oriented to time-delay systems, which is then applied to robustify the optimal regulator. As a result, the sliding mode compensating control leading to suppression of the disturbances from the initial time moment is designed. The obtained robust control algorithm is verified by simulations in the illustrative example.