首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Functional data analysis of nonlinear modes of variation
  • 作者:Rima Izem ; J. S. Marron
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2007
  • 卷号:1
  • 页码:641-676
  • 出版社:Institute of Mathematical Statistics
  • 摘要:A set of curves or images of similar shape is an increasingly common functional data set collected in the sciences. Principal Component Analysis (PCA) is the most widely used technique to decompose variation in functional data. However, the linear modes of variation found by PCA are not always interpretable by the experimenters. In addition, the modes of variation of interest to the experimenter are not always linear. We present in this paper a new analysis of variance for Functional Data. Our method was motivated by decomposing the variation in the data into predetermined and interpretable directions (i.e. modes) of interest. Since some of these modes could be nonlinear, we develop a new defined ratio of sums of squares which takes into account the curvature of the space of variation. We discuss, in the general case, consistency of our estimates of variation, using mathematical tools from differential geometry and shape statistics. We successfully applied our method to a motivating example of biological data. This decomposition allows biologists to compare the prevalence of different genetic tradeoffs in a population and to quantify the effect of selection on evolution.
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有