首页    期刊浏览 2025年01月21日 星期二
登录注册

文章基本信息

  • 标题:High Impedance Fault Detection using LVQ Neural Networks
  • 作者:Abhishek Bansal, G. N. Pillai
  • 期刊名称:International Journal of Computer, Information, and Systems Science, and Engineering
  • 印刷版ISSN:1307-2331
  • 出版年度:2007
  • 卷号:1
  • 期号:3
  • 出版社:World Academy of Science, Engineering and Technology
  • 摘要:This paper presents a new method to detect high impedance faults in radial distribution systems. Magnitudes of third and fifth harmonic components of voltages and currents are used as a feature vector for fault discrimination. The proposed methodology uses a learning vector quantization (LVQ) neural network as a classifier for identifying high impedance arc-type faults. The network learns from the data obtained from simulation of a simple radial system under different fault and system conditions. Compared to a feed-forward neural network, a properly tuned LVQ network gives quicker response.
  • 关键词:Fault identification, distribution networks, high impedance arc-faults, feature vector, LVQ networks.
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有