首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Robust Real-Time Background Subtraction Based on Local Neighborhood Patterns
  • 本地全文:下载
  • 作者:Ariel Amato ; Mikhail G. Mozerov ; F. Xavier Roca
  • 期刊名称:EURASIP Journal on Advances in Signal Processing
  • 印刷版ISSN:1687-6172
  • 电子版ISSN:1687-6180
  • 出版年度:2010
  • 卷号:2010
  • DOI:10.1155/2010/901205
  • 出版社:Hindawi Publishing Corporation
  • 摘要:

    This paper describes an efficient background subtraction technique for detecting moving objects. The proposed approach is able to overcome difficulties like illumination changes and moving shadows. Our method introduces two discriminative features based on angular and modular patterns, which are formed by similarity measurement between two sets of RGB color vectors: one belonging to the background image and the other to the current image. We show how these patterns are used to improve foreground detection in the presence of moving shadows and in the case when there are strong similarities in color between background and foreground pixels. Experimental results over a collection of public and own datasets of real image sequences demonstrate that the proposed technique achieves a superior performance compared with state-of-the-art methods. Furthermore, both the low computational and space complexities make the presented algorithm feasible for real-time applications.

国家哲学社会科学文献中心版权所有