首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:A Multifactor Extension of Linear Discriminant Analysis for Face Recognition under Varying Pose and Illumination
  • 本地全文:下载
  • 作者:Sung Won Park ; Marios Savvides
  • 期刊名称:EURASIP Journal on Advances in Signal Processing
  • 印刷版ISSN:1687-6172
  • 电子版ISSN:1687-6180
  • 出版年度:2010
  • 卷号:2010
  • DOI:10.1155/2010/158395
  • 出版社:Hindawi Publishing Corporation
  • 摘要:

    Linear Discriminant Analysis (LDA) and Multilinear Principal Component Analysis (MPCA) are leading subspace methods for achieving dimension reduction based on supervised learning. Both LDA and MPCA use class labels of data samples to calculate subspaces onto which these samples are projected. Furthermore, both methods have been successfully applied to face recognition. Although LDA and MPCA share common goals and methodologies, in previous research they have been applied separately and independently. In this paper, we propose an extension of LDA to multiple factor frameworks. Our proposed method, Multifactor Discriminant Analysis, aims to obtain multilinear projections that maximize the between-class scatter while minimizing the withinclass scatter, which is the same core fundamental objective of LDA. Moreover, Multifactor Discriminant Analysis (MDA), like MPCA, uses multifactor analysis and calculates subject parameters that represent the characteristics of subjects and are invariant to other changes, such as viewpoints or lighting conditions. In this way, our proposed MDA combines the best virtues of both LDA and MPCA for face recognition.

国家哲学社会科学文献中心版权所有