首页    期刊浏览 2025年02月28日 星期五
登录注册

文章基本信息

  • 标题:On generalizations of the series of Taylor, Lagrange, Laurent and Teixeira
  • 本地全文:下载
  • 作者:L. M. B. C. Campos
  • 期刊名称:International Journal of Mathematics and Mathematical Sciences
  • 印刷版ISSN:0161-1712
  • 电子版ISSN:1687-0425
  • 出版年度:1990
  • 卷号:13
  • 期号:4
  • 页码:687-708
  • DOI:10.1155/S0161171290000941
  • 出版社:Hindawi Publishing Corporation
  • 摘要:

    The classical theorems of Taylor, Lagrange, Laurent and Teixeira, are extended from the representation of a complex function F ( z ) , to its derivative F ( ν ) ( z ) of complex order ν , understood as either a ‘Liouville’ (1832) or a ‘Rieman (1847)’ differintegration (Campos 1984, 1985); these results are distinct from, and alternative to, other extensions of Taylor's series using differintegrations (Osler 1972, Lavoie & Osler & Tremblay 1976). We consider a complex function F ( z ) , which is analytic (has an isolated singularity) at ζ , and expand its derivative of complex order F ( ν ) ( z ) , in an ascending (ascending-descending) series of powers of an auxiliary function f ( z ) , yielding the generalized Teixeira (Lagrange) series, which includes, for f ( z ) = z − ζ , the generalized Taylor (Laurent) series. The generalized series involve non-integral powers and/or coefficients evaluated by fractional derivatives or integrals, except in the case ν = 0 , when the classical theorems of Taylor (1715), Lagrange (1770), Laurent (1843) and Teixeira (1900) are regained. As an application, these generalized series can be used to generate special functions with complex parameters (Campos 1986), e.g., the Hermite and Bessel types.

国家哲学社会科学文献中心版权所有