首页    期刊浏览 2024年12月04日 星期三
登录注册

文章基本信息

  • 标题:On weak solutions of semilinear hyperbolic-parabolic equations
  • 本地全文:下载
  • 作者:Jorge Ferreira
  • 期刊名称:International Journal of Mathematics and Mathematical Sciences
  • 印刷版ISSN:0161-1712
  • 电子版ISSN:1687-0425
  • 出版年度:1996
  • 卷号:19
  • 期号:4
  • 页码:751-758
  • DOI:10.1155/S0161171296001044
  • 出版社:Hindawi Publishing Corporation
  • 摘要:

    In this paper we prove the existence and uniqueness of weak solutions of the mixed problem for the nonlinear hyperbolic-parabolic equation ( K 1 ( x , t ) u ′ ) ′ + K 2 ( x , t ) u ′ + A ( t ) u + F ( u ) = f with null Dirichlet boundary conditions and zero initial data, where F ( s ) is a continuous function such that s F ( s ) ≥ 0 , ∀ s ∈ R and { A ( t ) ; t ≥ 0 } is a family of operators of L ( H 0 1 ( Ω ) ; H − 1 ( Ω ) ) . For the existence we apply the Faedo-Galerkin method with an unusual a priori estimate and a result of W. A. Strauss. Uniqueness is proved only for some particular classes of functions F .

国家哲学社会科学文献中心版权所有