An analytical expression for the solution of the prey-predator problem by an adaptation of the homotopy analysis method (HAM) is presented. The HAM is treated as an algorithm for approximating the solution of the problem in a sequence of time intervals; that is, HAM is converted into a hybrid numeric-analytic method called the multistage HAM (MSHAM). Comparisons between the MSHAM solutions and the fourth-order Runge-Kutta (RK4) numerical solutions reveal that the new technique is a promising tool for the nonlinear systems of ordinary differential equations.