首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:A New Iterative Algorithm for Approximating Common Fixed Points for Asymptotically Nonexpansive Mappings
  • 本地全文:下载
  • 作者:H. Y. Zhou ; Y. J. Cho ; S. M. Kang
  • 期刊名称:Fixed Point Theory and Applications
  • 印刷版ISSN:1687-1820
  • 电子版ISSN:1687-1812
  • 出版年度:2007
  • 卷号:2007
  • DOI:10.1155/2007/64874
  • 出版社:Hindawi Publishing Corporation
  • 摘要:

    Suppose that K is a nonempty closed convex subset of a real uniformly convex and smooth Banach space E with P as a sunny nonexpansive retraction. Let T 1 , T 2 : K → E be two weakly inward and asymptotically nonexpansive mappings with respect to P with sequences { K n } , { l n } ⊂ [ 1 , ∞ ) ,   lim n → ∞ k n = 1 ,   lim n → ∞ l n = 1 , F ( T 1 ) ∩ F ( T 2 ) = { x ∈ K : T 1 x = T 2 x = x } ≠ ∅ , respectively. Suppose that { x n } is a sequence in K generated iteratively by x 1 ∈ K , x n + 1 = α n x n + β n ( P T 1 ) n x n + γ n ( P T 2 ) n x n , for all n ≥ 1 , where { α n } , { β n } , and { γ n } are three real sequences in [ ε , 1 − ε ] for some ε > 0 which satisfy condition α n + β n + γ n = 1 . Then, we have the following. (1) If one of T 1 and T 2 is completely continuous or demicompact and ∑ n = 1 ∞ ( k n − 1 ) < ∞ , ∑ n = 1 ∞ ( l n − 1 ) < ∞ , then the strong convergence of { x n } to some q ∈ F ( T 1 ) ∩ F ( T 2 ) is established. (2) If E is a real uniformly convex Banach space satisfying Opial's condition or whose norm is Fréchet differentiable, then the weak convergence of { x n } to some q ∈ F ( T 1 ) ∩ F ( T 2 ) is proved.

国家哲学社会科学文献中心版权所有