首页    期刊浏览 2025年02月27日 星期四
登录注册

文章基本信息

  • 标题:Optimizing Statistical Character Recognition Using Evolutionary Strategies to Recognize Aircraft Tail Numbers
  • 本地全文:下载
  • 作者:Antonio Berlanga ; Juan A. Besada ; Jesús García Herrero
  • 期刊名称:EURASIP Journal on Advances in Signal Processing
  • 印刷版ISSN:1687-6172
  • 电子版ISSN:1687-6180
  • 出版年度:2004
  • 卷号:2004
  • 期号:8
  • 页码:1125-1134
  • DOI:10.1155/S1110865704312084
  • 出版社:Hindawi Publishing Corporation
  • 摘要:

    The design of statistical classification systems for optical character recognition (OCR) is a cumbersome task. This paper proposes a method using evolutionary strategies (ES) to evolve and upgrade the set of parameters in an OCR system. This OCR is applied to identify the tail number of aircrafts moving on the airport. The proposed approach is discussed and some results are obtained using a benchmark data set. This research demonstrates the successful application of ES to a difficult, noisy, and real-world problem.

国家哲学社会科学文献中心版权所有