首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:A New Class of Particle Filters for Random Dynamic Systems with Unknown Statistics
  • 本地全文:下载
  • 作者:Joaquín Míguez ; Mónica F. Bugallo ; Petar M. Djurić
  • 期刊名称:EURASIP Journal on Advances in Signal Processing
  • 印刷版ISSN:1687-6172
  • 电子版ISSN:1687-6180
  • 出版年度:2004
  • 卷号:2004
  • 期号:15
  • 页码:2278-2294
  • DOI:10.1155/S1110865704406039
  • 出版社:Hindawi Publishing Corporation
  • 摘要:

    In recent years, particle filtering has become a powerful tool for tracking signals and time-varying parameters of random dynamic systems. These methods require a mathematical representation of the dynamics of the system evolution, together with assumptions of probabilistic models. In this paper, we present a new class of particle filtering methods that do not assume explicit mathematical forms of the probability distributions of the noise in the system. As a consequence, the proposed techniques are simpler, more robust, and more flexible than standard particle filters. Apart from the theoretical development of specific methods in the new class, we provide computer simulation results that demonstrate the performance of the algorithms in the problem of autonomous positioning of a vehicle in a 2 -dimensional space.

国家哲学社会科学文献中心版权所有