A multiple-input multiple-output (MIMO) wireless communication system with orthogonal frequency division multiplexing (OFDM) is expected to be a promising scheme. However, the estimation of the carrier frequency offset (CFO) and the channel parameters is a great challenging task. In this paper, a maximum-likelihood- (ML-) based algorithm is proposed to jointly estimate the frequency-selective channels and the CFO in MIMO-OFDM by using a block-type pilot. The proposed algorithm is capable of dealing with the CFO range nearly ± 1 / 2 useful OFDM signal bandwidth. Furthermore, the cases with timing error and unknown channel order are discussed. The Cramér-Rao bound (CRB) for the problem is developed to evaluate the performance of the algorithm. Computer simulations show that the proposed algorithm can exploit the gain from multiantenna to improve effectively the estimation performance and achieve the CRB in high signal-to-noise ratio (SNR).