Methods for providing good spectral efficiency, without disadvantaging the delivered quality of service (QoS), in time-varying fading channels are presented. The key idea is to allocate system resources according to the encountered channel. Two approaches are examined: variable-size burst construction, and adaptive modulation. The first approach adapts the burst size according to the channel rate of change. In doing so, the available training symbols are efficiently utilized. The second adaptation approach tracks the operating channel quality, so that the most efficient modulation mode can be invoked while guaranteeing a target QoS. It is shown that these two methods can be effectively combined in a common framework for improving system efficiency, while guaranteeing good QoS. The proposed framework is especially applicable to multistate channels, in which at least one state can be considered sufficiently slowly varying. For such environments, the obtained simulation results demonstrate improved system performance and spectral efficiency.