首页    期刊浏览 2024年12月14日 星期六
登录注册

文章基本信息

  • 标题:Subspace-Based Noise Reduction for Speech Signals via Diagonal and Triangular Matrix Decompositions: Survey and Analysis
  • 本地全文:下载
  • 作者:Per Christian Hansen ; Søren Holdt Jensen
  • 期刊名称:EURASIP Journal on Advances in Signal Processing
  • 印刷版ISSN:1687-6172
  • 电子版ISSN:1687-6180
  • 出版年度:2007
  • 卷号:2007
  • DOI:10.1155/2007/92953
  • 出版社:Hindawi Publishing Corporation
  • 摘要:

    We survey the definitions and use of rank-revealing matrix decompositions in single-channel noise reduction algorithms for speech signals. Our algorithms are based on the rank-reduction paradigm and, in particular, signal subspace techniques. The focus is on practical working algorithms, using both diagonal (eigenvalue and singular value) decompositions and rank-revealing triangular decompositions (ULV, URV, VSV, ULLV, and ULLIV). In addition, we show how the subspace-based algorithms can be analyzed and compared by means of simple FIR filter interpretations. The algorithms are illustrated with working Matlab code and applications in speech processing.

国家哲学社会科学文献中心版权所有