首页    期刊浏览 2025年02月28日 星期五
登录注册

文章基本信息

  • 标题:Comparing Robustness of Pairwise and Multiclass Neural-Network Systems for Face Recognition
  • 本地全文:下载
  • 作者:J. Uglov ; L. Jakaite ; V. Schetinin
  • 期刊名称:EURASIP Journal on Advances in Signal Processing
  • 印刷版ISSN:1687-6172
  • 电子版ISSN:1687-6180
  • 出版年度:2008
  • 卷号:2008
  • DOI:10.1155/2008/468693
  • 出版社:Hindawi Publishing Corporation
  • 摘要:

    Noise, corruptions, and variations in face images can seriously hurt the performance of face-recognition systems. To make these systems robust to noise and corruptions in image data, multiclass neural networks capable of learning from noisy data have been suggested. However on large face datasets such systems cannot provide the robustness at a high level. In this paper, we explore a pairwise neural-network system as an alternative approach to improve the robustness of face recognition. In our experiments, the pairwise recognition system is shown to outperform the multiclass-recognition system in terms of the predictive accuracy on the test face images.

国家哲学社会科学文献中心版权所有