首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Sparse Deconvolution Using Support Vector Machines
  • 本地全文:下载
  • 作者:José Luis Rojo-Álvarez ; Manel Martínez-Ramón ; Jordi Muñoz-Marí
  • 期刊名称:EURASIP Journal on Advances in Signal Processing
  • 印刷版ISSN:1687-6172
  • 电子版ISSN:1687-6180
  • 出版年度:2008
  • 卷号:2008
  • DOI:10.1155/2008/816507
  • 出版社:Hindawi Publishing Corporation
  • 摘要:

    Sparse deconvolution is a classical subject in digital signal processing, having many practical applications. Support vector machine (SVM) algorithms show a series of characteristics, such as sparse solutions and implicit regularization, which make them attractive for solving sparse deconvolution problems. Here, a sparse deconvolution algorithm based on the SVM framework for signal processing is presented and analyzed, including comparative evaluations of its performance from the points of view of estimation and detection capabilities, and of robustness with respect to non-Gaussian additive noise.

国家哲学社会科学文献中心版权所有