首页    期刊浏览 2024年12月13日 星期五
登录注册

文章基本信息

  • 标题:One-Class SVMs Challenges in Audio Detection and Classification Applications
  • 本地全文:下载
  • 作者:Asma Rabaoui ; Hachem Kadri ; Zied Lachiri
  • 期刊名称:EURASIP Journal on Advances in Signal Processing
  • 印刷版ISSN:1687-6172
  • 电子版ISSN:1687-6180
  • 出版年度:2008
  • 卷号:2008
  • DOI:10.1155/2008/834973
  • 出版社:Hindawi Publishing Corporation
  • 摘要:

    Support vector machines (SVMs) have gained great attention and have been used extensively and successfully in the field of sounds (events) recognition. However, the extension of SVMs to real-world signal processing applications is still an ongoing research topic. Our work consists of illustrating the potential of SVMs on recognizing impulsive audio signals belonging to a complex real-world dataset. We propose to apply optimized one-class support vector machines (1-SVMs) to tackle both sound detection and classification tasks in the sound recognition process. First, we propose an efficient and accurate approach for detecting events in a continuous audio stream. The proposed unsupervised sound detection method which does not require any pretrained models is based on the use of the exponential family model and 1-SVMs to approximate the generalized likelihood ratio. Then, we apply novel discriminative algorithms based on 1-SVMs with new dissimilarity measure in order to address a supervised sound-classification task. We compare the novel sound detection and classification methods with other popular approaches. The remarkable sound recognition results achieved in our experiments illustrate the potential of these methods and indicate that 1-SVMs are well suited for event-recognition tasks.

国家哲学社会科学文献中心版权所有