首页    期刊浏览 2025年01月10日 星期五
登录注册

文章基本信息

  • 标题:Spatial-Temporal Clustering of Neural Data Using Linked-Mixtures of Hidden Markov Models
  • 本地全文:下载
  • 作者:Shalom Darmanjian ; Jose Principe
  • 期刊名称:EURASIP Journal on Advances in Signal Processing
  • 印刷版ISSN:1687-6172
  • 电子版ISSN:1687-6180
  • 出版年度:2009
  • 卷号:2009
  • DOI:10.1155/2009/892461
  • 出版社:Hindawi Publishing Corporation
  • 摘要:

    This paper builds upon the previous Brain Machine Interface (BMI) signal processing models that require apriori knowledge about the patient's arm kinematics. Specifically, we propose an unsupervised hierarchical clustering model that attempts to discover both the interdependencies between neural channels and the self-organized clusters represented in the spatial-temporal neural data. Results from both synthetic data generated with a realistic neural model and real BMI data are used to quantify the performance of the proposed methodology. Since BMIs must work with disabled patients who lack arm kinematic information, the clustering work described within this paper is relevant for future BMIs.

国家哲学社会科学文献中心版权所有