Let T ∈ ℕ be an integer with T > 2 , and let 𝕋 : = { 1 , … , T } . We study the existence of solutions of nonlinear discrete problems Δ 2 u ( t − 1 ) + λ k a ( t ) u ( t ) + g ( t , u ( t ) ) = h ( t ) , t ∈ 𝕋 , u ( 0 ) = u ( T ) , u ( 1 ) = u ( T + 1 ) , where a , h : 𝕋 → ℝ with a > 0 , λ k is the k th eigenvalue of the corresponding linear eigenvalue problem.