首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:On Solving <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>L</mml:mi><mml:mi>q</mml:mi></mml:msub></mml:math>-Penalized Regressions
  • 本地全文:下载
  • 作者:Tracy Zhou Wu ; Yingyi Chu ; Yan Yu
  • 期刊名称:Advances in Decision Sciences
  • 印刷版ISSN:2090-3359
  • 电子版ISSN:2090-3367
  • 出版年度:2007
  • 卷号:2007
  • DOI:10.1155/2007/24053
  • 出版社:Hindawi Publishing Corporation
  • 摘要:Lq-penalized regression arises in multidimensional statistical modelling where all or part of the regression coefficients are penalized to achieve both accuracy and parsimony of statistical models. There is often substantial computational difficulty except for the quadratic penalty case. The difficulty is partly due to the nonsmoothness of the objective function inherited from the use of the absolute value. We propose a new solution method for the general Lq-penalized regression problem based on space transformation and thus efficient optimization algorithms. The new method has immediate applications in statistics, notably in penalized spline smoothing problems. In particular, the LASSO problem is shown to be polynomial time solvable. Numerical studies show promise of our approach.
国家哲学社会科学文献中心版权所有