首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Normal periodic solutions for the fractional abstract Cauchy problem
  • 本地全文:下载
  • 作者:Jennifer Bravo ; Carlos Lizama
  • 期刊名称:Boundary Value Problems
  • 印刷版ISSN:1687-2762
  • 电子版ISSN:1687-2770
  • 出版年度:2021
  • 卷号:2021
  • 期号:1
  • 页码:1
  • DOI:10.1186/s13661-021-01529-2
  • 出版社:Hindawi Publishing Corporation
  • 摘要:We show that if A is a closed linear operator defined in a Banach space X and there exist $t_{0} \geq 0$ and $M>0$ such that $\{(im)^{\alpha }\}_{ m > t_{0}} \subset \rho (A)$ , the resolvent set of A, and $$ \bigl\Vert (im)^{\alpha }\bigl(A (im)^{\alpha }I \bigr)^{-1} \bigr\Vert \leq M \quad \text{ for all } \vert m \vert > t_{0}, m \in \mathbb{Z}, $$ then, for each $\frac{1}{p}<\alpha \leq \frac{2}{p}$ and $1< p < 2$ , the abstract Cauchy problem with periodic boundary conditions $$ \textstyle\begin{cases} _{GL}D^{\alpha }_{t} u(t) Au(t) = f(t), & t \in (0,2\pi ); \\ u(0)=u(2\pi ), \end{cases} $$ where $_{GL}D^{\alpha }$ denotes the Grünwald–Letnikov derivative, admits a normal 2π-periodic solution for each $f\in L^{p}_{2\pi }(\mathbb{R}, X)$ that satisfies appropriate conditions. In particular, this happens if A is a sectorial operator with spectral angle $\phi _{A} \in (0, \alpha \pi /2)$ and $\int _{0}^{2\pi } f(t)\,dt \in \operatorname{Ran}(A)$ .
  • 关键词:35R11 ; 35B10 ; 43A50
国家哲学社会科学文献中心版权所有