首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Nation-wide estimation of groundwater redox conditions and nitrate concentrations through machine learning
  • 本地全文:下载
  • 作者:Lukas Knoll ; Lutz Breuer ; Martin Bach
  • 期刊名称:Environmental Research Letters
  • 印刷版ISSN:1748-9326
  • 电子版ISSN:1748-9326
  • 出版年度:2020
  • 卷号:15
  • 期号:6
  • 页码:64004
  • DOI:10.1088/1748-9326/ab7d5c
  • 出版社:IOP Publishing Ltd
  • 摘要:The protection of water resources and development of mitigation strategies require large-scale information on water pollution such as nitrate. Machine learning techniques like random forest (RF) have proven their worth for estimating groundwater quality based on spatial environmental predictors. We investigate the potential of RF and quantile random forest (QRF) to estimate redox conditions and nitrate concentration in groundwater (1 km × 1 km resolution) using the European Water Framework Directive groundwater monitoring network as well as spatial environmental information available throughout Germany. The RF model for nitrate achieves a good predictive performance with an R2 of 0.52. Dominant predictors are the redox conditions in the groundwater body, hydrogeological units and the percentage of arable land. An uncertainty assessment using QRF shows rather large uncertainties with a mean prediction interval (MPI) of 53.0 mg l-1. This study represents the first nation-wide data-driven assessment of the spatial distribution of groundwater nitrate concentrations for Germany.
  • 关键词:groundwater quality; large-scale; nitrate pollution; random forest; redox conditions; uncertainty
国家哲学社会科学文献中心版权所有