期刊名称:International Journal of Distributed Sensor Networks
印刷版ISSN:1550-1329
电子版ISSN:1550-1477
出版年度:2020
卷号:16
期号:4
页码:1
DOI:10.1177/1550147720916405
出版社:Hindawi Publishing Corporation
摘要:In this article, principal component analysis method, which is applied to image compression and feature extraction, is introduced into the dimension reduction of input characteristic variable of support vector regression, and a method of joint estimation of near-field angle and range based on principal component analysis dimension reduction is proposed. Signal-to-noise ratio and calculation amount are the decisive factors affecting the performance of the algorithm. Principal component analysis is used to fuse the main characteristics of training data and discard redundant information, the signal-to-noise ratio is improved, and the calculation amount is reduced accordingly. Similarly, support vector regression is used to model the signal, and the upper triangular elements of the signal covariance matrix are usually used as input features. Since the covariance matrix has more upper triangular elements, training it as a feature input will affect the training speed to some extent. Principal component analysis is used to reduce the dimensionality of the upper triangular element of the covariance matrix of the known signal, and it is used as the input feature of the multi-output support vector regression machine to construct the near-field parameter estimation model, and the parameter estimation of unknown signal is herein obtained. Simulation results show that this method has high estimation accuracy and training speed, and has strong adaptability at low signal-to-noise ratio, and the performance is better than that of the back-propagation neural network algorithm and the two-step multiple signal classification algorithm.
关键词:Dimensionality reduction; principal component analysis; support vector regression machine; near-field source
其他关键词:Dimensionality reduction ; principal component analysis ; support vector regression machine ; near-field source