首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Detection of ship targets in photoelectric images based on an improved recurrent attention convolutional neural network
  • 本地全文:下载
  • 作者:Zhijing Xu ; Yuhao Huo ; Kun Liu
  • 期刊名称:International Journal of Distributed Sensor Networks
  • 印刷版ISSN:1550-1329
  • 电子版ISSN:1550-1477
  • 出版年度:2020
  • 卷号:16
  • 期号:3
  • 页码:1
  • DOI:10.1177/1550147720912959
  • 出版社:Hindawi Publishing Corporation
  • 摘要:Deep learning algorithms have been increasingly used in ship image detection and classification. To improve the ship detection and classification in photoelectric images, an improved recurrent attention convolutional neural network is proposed. The proposed network has a multi-scale architecture and consists of three cascading sub-networks, each with a VGG19 network for image feature extraction and an attention proposal network for locating feature area. A scale-dependent pooling algorithm is designed to select an appropriate convolution in the VGG19 network for classification, and a multi-feature mechanism is introduced in attention proposal network to describe the feature regions. The VGG19 and attention proposal network are cross-trained to accelerate convergence and to improve detection accuracy. The proposed method is trained and validated on a self-built ship database and effectively improve the detection accuracy to 86.7% outperforming the baseline VGG19 and recurrent attention convolutional neural network methods.
  • 关键词:Ship detection; fine-grained image classification; recurrent attention convolutional neural network; scale-dependent pooling; cross-training
国家哲学社会科学文献中心版权所有