期刊名称:International Journal of Distributed Sensor Networks
印刷版ISSN:1550-1329
电子版ISSN:1550-1477
出版年度:2020
卷号:16
期号:3
页码:1
DOI:10.1177/1550147720911009
出版社:Hindawi Publishing Corporation
摘要:Wavelet family and differential evolution are proposed for categorization of epilepsy cases based on electroencephalogram (EEG) signals. Discrete wavelet transform is widely used in feature extraction step because it efficiently works in this field, as confirmed by the results of previous studies. The feature selection step is used to minimize dimensionality by excluding irrelevant features. This step is conducted using differential evolution. This article presents an efficient model for EEG classification by considering feature extraction and selection. Seven different types of common wavelets were tested in our research work. These are Discrete Meyer (dmey), Reverse biorthogonal (rbio), Biorthogonal (bior), Daubechies (db), Symlets (sym), Coiflets (coif), and Haar (Haar). Several kinds of discrete wavelet transform are used to produce a wide variety of features. Afterwards, we use differential evolution to choose appropriate features that will achieve the best performance of signal classification. For classification step, we have used Bonn databases to build the classifiers and test their performance. The results prove the effectiveness of the proposed model.