首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Combined dynamic multi-feature and rule-based behavior for accurate malware detection
  • 本地全文:下载
  • 作者:Mohamed Belaoued ; Abdelaziz Boukellal ; Mohamed Amir Koalal
  • 期刊名称:International Journal of Distributed Sensor Networks
  • 印刷版ISSN:1550-1329
  • 电子版ISSN:1550-1477
  • 出版年度:2019
  • 卷号:15
  • 期号:11
  • 页码:1
  • DOI:10.1177/1550147719889907
  • 出版社:Hindawi Publishing Corporation
  • 摘要:Malware have become the scourge of the century, as they are continuously evolving and becoming more complex with increasing damages. Therefore, an adequate protection against such threats is vital. Behavior-based malware detection techniques have shown to be effective at overcoming the weaknesses of the signature-based ones. However, they are known for their high false alarms, which is still a very challenging problem. In this article, we address this shortcoming by proposing a rule-based behavioral malware detection system, which inherits the advantages of both signature and behavior-based approaches. We apply the proposed detection system on a combined set of three types of dynamic features, namely, (1) list of application programming interface calls; (2) application programming interface sequences; and (3) network traffic, which represents the IP addresses and domain names used by malware to connect to remote command-and-control servers. Feature selection and construction techniques, that is, term frequency–inverse document frequency and longest common subsequence, are performed on the three extracted features to generate new set of features, which are used to build behavioral Yet Another Recursive Acronym rules. The proposed malware detection approach is able to achieve an accuracy of 97.22% and a false positive rate of 4.69%.
  • 关键词:Malware detection; dynamic analysis; application programming interface sequences; network traffic
国家哲学社会科学文献中心版权所有