期刊名称:International Journal of Distributed Sensor Networks
印刷版ISSN:1550-1329
电子版ISSN:1550-1477
出版年度:2018
卷号:14
期号:11
页码:1
DOI:10.1177/1550147718806480
出版社:Hindawi Publishing Corporation
摘要:Failure prediction for hard disk drives is a typical and effective approach to improve the reliability of storage systems. In a large-scale data center environment, the various brands and models of drives serve diverse applications with different input/output workload patterns, and non-ignorable differences exist in each type of drive failures, which make this mechanism much challenging. Although many efforts are devoted to this mechanism, the accuracy still needs to be improved. In this article, we propose a failure prediction method for hard disk drives based on a part-voting random forest, which differentiates prediction of failures in a coarse-grained manner. We conduct groups of validation experiments on two real-world datasets, which contain the SMART data of 64,193 drives. The experimental results show that our proposed method can achieve a better prediction accuracy than state-of-the-art methods.
关键词:Failure prediction; random forest; clustering algorithm; hard disk drives