期刊名称:International Journal of Distributed Sensor Networks
印刷版ISSN:1550-1329
电子版ISSN:1550-1477
出版年度:2017
卷号:13
期号:4
页码:1
DOI:10.1177/1550147717703116
出版社:Hindawi Publishing Corporation
摘要:In previous work, imbalanced datasets composed of more benign samples (the majority class) than the malicious one (the minority class) have been widely adopted in Android malware detection. These imbalanced datasets bias learning toward the majority class, so that the minority class examples are more likely to be misclassified. To solve the problem, we propose a new oversampling method called fuzzy–synthetic minority oversampling technique, which is based on fuzzy set theory and the synthetic minority oversampling technique method. As the sample size of the majority class increases relative to that of the minority class, fuzzy–synthetic minority oversampling technique generates more synthetic examples for each minority class examples in the fuzzy region, where the minority examples have a low degree of membership to the minority class and are more likely to be misclassified. Using the new synthetic examples, the classifiers build larger decision regions that contain more minority examples, and they are no longer biased to the majority class. Compared with synthetic minority oversampling technique and Borderline–synthetic minority oversampling technique methods, fuzzy–synthetic minority oversampling technique achieves higher accuracy on both the minority class and the entire datasets.