期刊名称:International Journal of Distributed Sensor Networks
印刷版ISSN:1550-1329
电子版ISSN:1550-1477
出版年度:2019
卷号:15
期号:5
页码:1
DOI:10.1177/1550147719849357
出版社:Hindawi Publishing Corporation
摘要:Human activity recognition based on wireless body area networks plays an essential role in various applications such as health monitoring, rehabilitation, and physical training. Currently, most of the human activity recognition is based on smartphone, and it provides more possibilities for this task with the rapid proliferation of wearable devices. To obtain satisfactory accuracy and adapt to various scenarios, we built a smart-belt which embedded the VG350 as posture data collector. This article proposes a hierarchical activity recognition structure, which divides the recognition process into two levels. Then a multi-classification Support Vector Machine algorithm optimized by Particle Swarm Optimization is applied to identify five kinds of conventional human postures. And we compare the effectiveness of triaxial accelerometer and gyroscope when used together and separately. Finally, we conduct systematic performance analysis. Experimental results show that our overall classification accuracy is 92.3% and the F-Measure can reach 92.63%, which indicates the human activity recognition system is accurate and effective.
关键词:Wireless body area networks; human activity recognition; Support Vector Machine; smart-belt; health monitoring