首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:A novel framework for face recognition using robust local representation–based classification
  • 本地全文:下载
  • 作者:Aihua Yu ; Gang Li ; Beiping Hou
  • 期刊名称:International Journal of Distributed Sensor Networks
  • 印刷版ISSN:1550-1329
  • 电子版ISSN:1550-1477
  • 出版年度:2019
  • 卷号:15
  • 期号:3
  • 页码:1
  • DOI:10.1177/1550147719836082
  • 出版社:Hindawi Publishing Corporation
  • 摘要:Face recognition via representation-based classification is a trending technique in the recent years. However, the recognition performance of the systems using such a technique degrades in an unconstrained environment. In this article, a novel framework is proposed for representation-based face recognition. To deal with the unconstrained environment, a pre-process is used to frontalize face images, and aligned downsampling local binary pattern features of the frontalized images are used for classification. A dimension reduction is then adopted in order to reduce the computation complexity via an optimized projection matrix. The recognition is carried out using an improved robust sparse coding algorithm. Such an algorithm is expected to avoid the overfitting problem. The open-universe test on labeled faces in the wild data sets shows that the recognition rate of the proposed system can reach 95% with a recall rate of 80%, which is best among those representation-based classification face recognition systems.
  • 关键词:Face recognition; alignment downsampling local binary pattern; robust sparse coding; projection matrix optimization; nonnegative sparse representation
国家哲学社会科学文献中心版权所有