首页    期刊浏览 2025年01月09日 星期四
登录注册

文章基本信息

  • 标题:Cyanobacteria and their secondary metabolites in three freshwater reservoirs in the United Kingdom
  • 本地全文:下载
  • 作者:Daria Filatova ; Martin R. Jones ; John A. Haley
  • 期刊名称:Environmental Sciences Europe
  • 印刷版ISSN:2190-4715
  • 出版年度:2021
  • 卷号:33
  • 期号:1
  • 页码:1
  • DOI:10.1186/s12302-021-00472-4
  • 出版社:BioMed Central
  • 摘要:Abstract Background Bloom-forming cyanobacteria occur globally in aquatic environments. They produce diverse bioactive metabolites, some of which are known to be toxic. The most studied cyanobacterial toxins are microcystins, anatoxin, and cylindrospermopsin, yet more than 2000 bioactive metabolites have been identified to date. Data on the occurrence of cyanopeptides other than microcystins in surface waters are sparse. Results We used a high-performance liquid chromatography–high-resolution tandem mass spectrometry/tandem mass spectrometry (HPLC–HRMS/MS) method to analyse cyanotoxin and cyanopeptide profiles in raw drinking water collected from three freshwater reservoirs in the United Kingdom. A total of 8 cyanopeptides were identified and quantified using reference standards. A further 20 cyanopeptides were identified based on a suspect-screening procedure, with class-equivalent quantification. Samples from Ingbirchworth reservoir showed the highest total cyanopeptide concentrations, reaching 5.8, 61, and 0.8 µg/L in August, September, and October, respectively. Several classes of cyanopeptides were identified with anabaenopeptins, cyanopeptolins, and microcystins dominating in September with 37%, 36%, and 26%, respectively. Samples from Tophill Low reservoir reached 2.4 µg/L in September, but remained below 0.2 µg/L in other months. Samples from Embsay reservoir did not exceed 0.1 µg/L. At Ingbirchworth and Tophill Low, the maximum chlorophyll-a concentrations of 37 µg/L and 22 µg/L, respectively, and cyanobacterial count of 6 × 10 4 cells/mL were observed at, or a few days after, peak cyanopeptide concentrations. These values exceed the World Health Organization’s guideline levels for relatively low probability of adverse health effects, which are defined as 10 µg/L chlorophyll-a and 2 × 10 4 cells/mL. Conclusions This data is the first to present concentrations of anabaenopeptins, cyanopeptolins, aeruginosins, and microginins, along with microcystins, in U.K. reservoirs. A better understanding of those cyanopeptides that are abundant in drinking water reservoirs can inform future monitoring and studies on abatement efficiency during water treatment.
  • 其他摘要:Abstract Background Bloom-forming cyanobacteria occur globally in aquatic environments. They produce diverse bioactive metabolites, some of which are known to be toxic. The most studied cyanobacterial toxins are microcystins, anatoxin, and cylindrospermopsin, yet more than 2000 bioactive metabolites have been identified to date. Data on the occurrence of cyanopeptides other than microcystins in surface waters are sparse. Results We used a high-performance liquid chromatography–high-resolution tandem mass spectrometry/tandem mass spectrometry (HPLC–HRMS/MS) method to analyse cyanotoxin and cyanopeptide profiles in raw drinking water collected from three freshwater reservoirs in the United Kingdom. A total of 8 cyanopeptides were identified and quantified using reference standards. A further 20 cyanopeptides were identified based on a suspect-screening procedure, with class-equivalent quantification. Samples from Ingbirchworth reservoir showed the highest total cyanopeptide concentrations, reaching 5.8, 61, and 0.8 µg/L in August, September, and October, respectively. Several classes of cyanopeptides were identified with anabaenopeptins, cyanopeptolins, and microcystins dominating in September with 37%, 36%, and 26%, respectively. Samples from Tophill Low reservoir reached 2.4 µg/L in September, but remained below 0.2 µg/L in other months. Samples from Embsay reservoir did not exceed 0.1 µg/L. At Ingbirchworth and Tophill Low, the maximum chlorophyll-a concentrations of 37 µg/L and 22 µg/L, respectively, and cyanobacterial count of 6 × 10 4 cells/mL were observed at, or a few days after, peak cyanopeptide concentrations. These values exceed the World Health Organization’s guideline levels for relatively low probability of adverse health effects, which are defined as 10 µg/L chlorophyll-a and 2 × 10 4 cells/mL. Conclusions This data is the first to present concentrations of anabaenopeptins, cyanopeptolins, aeruginosins, and microginins, along with microcystins, in U.K. reservoirs. A better understanding of those cyanopeptides that are abundant in drinking water reservoirs can inform future monitoring and studies on abatement efficiency during water treatment.
  • 其他关键词:Cyanotoxin, Cyanopeptide, Water quality, Mass spectrometry, Suspect-screening, Surface water, Natural toxin, Emerging contaminant
国家哲学社会科学文献中心版权所有