首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Qstack: Multi-tag Visual Rankings
  • 本地全文:下载
  • 作者:Phi Giang Pham ; Mao Lin Huang
  • 期刊名称:Journal of Software
  • 印刷版ISSN:1796-217X
  • 出版年度:2016
  • 卷号:11
  • 期号:7
  • 页码:695-703
  • DOI:10.17706/jsw.11.7.695-703
  • 出版社:Academy Publisher
  • 摘要:Multi-tag-based search is quite popular on collaborative websites and sharing-online-content systems. For this kind of search results, the challenge is how to compare grouped-tag values of tag collections on heterogeneous alternatives. This paper introduces a new visualization approach named Qstack for dealing with the challenge. Qstack purpose is to help users to visually rank multi-tags based on grouped-score combination within and across the categorized alternatives. The methodology applying interactive stacked bars, dynamic queries and adaptive focus context techniques enables users to easily create and adjust grouped-tag rankings of a large number of heterogeneous alternatives. A case study on Flickr photo award allocation will be presented for Qstack demonstration. We conducted a qualitative study for evaluating Qstack effectiveness, and the result indicates that our approach is useful for multi-tag rankings.
  • 其他关键词:Multiple tags, visual rankings, interactive stacked bars.
国家哲学社会科学文献中心版权所有