期刊名称:Latin American Journal of Probability and Mathematical Statistics
电子版ISSN:1980-0436
出版年度:2021
卷号:18
期号:1
页码:963
DOI:10.30757/ALEA.v18-35
出版社:Instituto Nacional De Matemática Pura E Aplicada
摘要:In this paper we consider the Kardar-Parisi-Zhang (KPZ) fixed point (ht , t ≥ 0) (Corwin et al., 2015; Matetski et al., 2016) and prove that, for suitable initial conditions, ht(x) − ht(0) converges to a two-sided Brownian motion with zero drift and diffusion coefficient 2, as t → ∞. The heart of the proof is the coupling method, that allows us to compare the TASEP height function started from a perturbation of density 1/2 with its invariant counterpart which, under KPZ scaling, turns into uniform estimates for the KPZ fixed point.