首页    期刊浏览 2025年01月19日 星期日
登录注册

文章基本信息

  • 标题:On the Passage Time Geometry of the Last Passage Percolation Problem
  • 本地全文:下载
  • 作者:Tom Alberts ; Eric Cator
  • 期刊名称:Latin American Journal of Probability and Mathematical Statistics
  • 电子版ISSN:1980-0436
  • 出版年度:2021
  • 卷号:18
  • 期号:1
  • 页码:211
  • DOI:10.30757/ALEA.v18-10
  • 出版社:Instituto Nacional De Matemática Pura E Aplicada
  • 摘要:We analyze the geometrical structure of the passage times in the last passage percolation model. Viewing the passage time as a piecewise linear function of the weights we determine the domains of the various pieces, which are the subsets of the weight space that make a given path the longest one. We focus on the case when all weights are assumed to be positive, and as a result each domain is a pointed polyhedral cone. We determine the extreme rays, facets, and two-dimensional faces of each cone, and also review a well-known simplicial decomposition of the maximal cones via the so-called order cone. All geometric properties are derived using arguments phrased in terms of the last passage model itself. Our motivation is to understand path probabilities of the extremal corner paths on rectangles in Z 2 , but all of our arguments apply to general, finite partially ordered sets.
  • 其他关键词:Last Passage Percolation, Convex Geometry, Partially Ordered Sets
国家哲学社会科学文献中心版权所有