首页    期刊浏览 2024年12月05日 星期四
登录注册

文章基本信息

  • 标题:On Nonlinear Rough Paths
  • 本地全文:下载
  • 作者:David Nualart ; Panqiu Xia
  • 期刊名称:Latin American Journal of Probability and Mathematical Statistics
  • 电子版ISSN:1980-0436
  • 出版年度:2020
  • 卷号:17
  • 期号:1
  • 页码:545
  • DOI:10.30757/ALEA.v17-22
  • 出版社:Instituto Nacional De Matemática Pura E Aplicada
  • 摘要:In this paper, we develop the theory of nonlinear rough paths. Following the ideas of Lyons and Gubinelli, we define the nonlinear rough integral ∫ t s W(dr, Yr), where W and Y are only α-Hölder continuous in time with α ∈ ( 1 3 , 1 2 ]. Also, we study the Kunita-type equation Yt = ξ ∫ t 0 W(dr, Ys), obtaining the local and global existence and uniqueness of the solution under suitable sufficient conditions. As an application, we study transport equations with rough vector fields and observe that the classical solution formula for smooth and Young’s cases does not provide a solution to the rough equation. Indeed this formula satisfies a transport equation with additional compensator terms (see (1.7)).
  • 其他关键词:Nonlinear rough paths, controlled rough paths, nonlinear rough integrals, rough differential equations, Itô’s formula, rough partial differential equations.
国家哲学社会科学文献中心版权所有