首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Deep Learning Data Privacy Protection Based on Homomorphic Encryption in AIoT
  • 本地全文:下载
  • 作者:Yichuan Wang ; Xiaolong Liang ; Xinhong Hei
  • 期刊名称:Mobile Information Systems
  • 印刷版ISSN:1574-017X
  • 出版年度:2021
  • 卷号:2021
  • 页码:1-11
  • DOI:10.1155/2021/5510857
  • 出版社:Hindawi Publishing Corporation
  • 摘要:With the rapid development of 5G technology, its high bandwidth, high reliability, low delay, and large connection characteristics have opened up a broader application field of IoT. Moreover, AIoT (Artificial Intelligence Internet of Things) has become the new development direction of IoT. Through deep learning of real-time data provided by the Internet of Things, AI can judge user habits more accurately, make devices behave in line with user expectations, and become more intelligent, thus improving product user experience. However, in the process, there is a lot of data interaction between the edge and the cloud. Given that the shared data contain a large amount of private information, preserving information security on the shared data is an important issue that cannot be neglected. In this paper, we combine deep learning with homomorphic encryption algorithm and design a deep learning network model based on secure multiparty computing (MPC). In the whole process, we realize that the cloud only owns the encryption samples of users, and users do not own any parameters or structural information related to the model. In the experimental part, we input the encrypted Mnist and Cifar-10 datasets into the model for testing, and the results show that the classification accuracy rate of the encrypted Mnist can reach 99.21%, which is very close to the result under plaintext. The classification accuracy rate of encrypted Cifar-10 can reach 91.35%, slightly lower than the test result in plaintext and better than the existing deep learning network model that can realize data privacy protection.
国家哲学社会科学文献中心版权所有