首页    期刊浏览 2025年03月01日 星期六
登录注册

文章基本信息

  • 标题:Faster Algorithms for Largest Empty Rectangles and Boxes
  • 本地全文:下载
  • 作者:Chan, Timothy M.
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2021
  • 卷号:189
  • 页码:24:1-24:15
  • DOI:10.4230/LIPIcs.SoCG.2021.24
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We revisit a classical problem in computational geometry: finding the largest-volume axis-aligned empty box (inside a given bounding box) amidst n given points in d dimensions. Previously, the best algorithms known have running time O(nlog²n) for d = 2 (by Aggarwal and Suri [SoCG'87]) and near n^d for d ≥ 3. We describe faster algorithms with running time - O(n2^{O(log^*n)}log n) for d = 2, - O(n^{2.5 o(1)}) time for d = 3, and - OÌf(n^{(5d 2)/6}) time for any constant d ≥ 4. To obtain the higher-dimensional result, we adapt and extend previous techniques for Klee’s measure problem to optimize certain objective functions over the complement of a union of orthants.
  • 关键词:Largest empty rectangle; largest empty box; Klee’s measure problem
国家哲学社会科学文献中心版权所有