摘要:In this paper, the hydraulic switching valve is designed and its dynamic performance is investigated through proposing a fast response actuator with magnetic shape memory alloy (MSMA) to drive the valve. MSMA actuator with spring return is designed and a double-layered coil is constructed to achieve compactness of electromagnetic case. The dynamic characteristics of the MSMA actuator are analyzed and the step response characteristics is tested. Hydraulic switching valve with MSMA actuator is designed with poppet type. Pressure and velocity field in the flow channel under different valve opening and different inlet and outlet pressure differences are analyzed in COMSOL Multiphysics software. The dynamics of the valve poppet during opening and closing process is modeled mathematically, and simulation analysis are conducted in AMESim software to analyze the response of valve under step and square wave signals. The step response of output flow rate and pressure-flow characteristic under different operating conditions are obtained through experiment. The results show that the MSMA based valve can achieve fast response with opening time of 5 ms at the pressure difference of 1 MPa, providing a theoretical support for the development of hydraulic switching valve with high performance actuator driven by MSMA.