摘要:As computing-intensive mobile applications become increasingly diversified, mobile devices’ computing power is hard to keep up with demand. Mobile devices migrate tasks to the Mobile Edge Computing (MEC) platform and improve the performance of task processing through reasonable allocation and caching of resources on the platform. Small cellular networks (SCN) have excellent short-distance communication capabilities, and the combination of MEC and SCN is a promising research direction. This paper focuses on minimizing energy consumption for task migration in small cellular networks and proposes a task migration energy optimization strategy with resource caching by combining optimal stopping theory with migration decision-making. Firstly, the process of device finding the MEC platform with the required task processing resources is formulated as the optimal stopping problem. Secondly, we prove an optimal stopping rule’s existence, obtain the optimal processing energy consumption threshold, and compare it with the device energy consumption. Finally, the platform with the best energy consumption is selected to process the task. In the simulation experiment, the optimization strategy has lower average migration energy consumption and higher average data execution energy efficiency and average distance execution energy efficiency, which improves task migration performance by 10% ∼ 60%.