摘要:In this study, we investigate a new fourth-order integrable nonlinear equation. Firstly, by means of the efficient Hirota bilinear approach, we establish novel types of solutions which include breather, rogue, and three-wave solutions. Secondly, with the aid of Lie symmetry method, we report the invariance properties of the studied equation such as the group of transformations, commutator and adjoint representation tables. A differential substitution is found by nonlinear self-adjointness (NSA) and thereafter the associated conservation laws are established. We show some dynamical characteristics of the obtained solutions through via the 3-dimensional and contour graphs.