首页    期刊浏览 2025年02月21日 星期五
登录注册

文章基本信息

  • 标题:A Multipulse Radar Signal Recognition Approach via HRF-Net Deep Learning Models
  • 本地全文:下载
  • 作者:Ji Li ; Huiqiang Zhang ; Jianping Ou
  • 期刊名称:Computational Intelligence and Neuroscience
  • 印刷版ISSN:1687-5265
  • 电子版ISSN:1687-5273
  • 出版年度:2021
  • 卷号:2021
  • 页码:1-9
  • DOI:10.1155/2021/9955130
  • 出版社:Hindawi Publishing Corporation
  • 摘要:In the field of electronic countermeasure, the recognition of radar signals is extremely important. This paper uses GNU Radio and Universal Software Radio Peripherals to generate 10 classes of close-to-real multipulse radar signals, namely, Barker, Chaotic, EQFM, Frank, FSK, LFM, LOFM, OFDM, P1, and P2. In order to obtain the time-frequency image (TFI) of the multipulse radar signal, the signal is Choi–Williams distribution (CWD) transformed. Aiming at the features of the multipulse radar signal TFI, we designed a distinguishing feature fusion extraction module (DFFE) and proposed a new HRF-Net deep learning model based on this module. The model has relatively few parameters and calculations. The experiments were carried out at the signal-to-noise ratio (SNR) of −14 ∼ 4 dB. In the case of −6 dB, the recognition result of HRF-Net reached 99.583% and the recognition result of the network still reached 97.500% under −14 dB. Compared with other methods, HRF-Nets have relatively better generalization and robustness.
国家哲学社会科学文献中心版权所有