首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Nonlinear analysis and prediction of soybean futures
  • 本地全文:下载
  • 作者:Tao Yin ; Yiming Wang
  • 期刊名称:Agricultural Economics
  • 印刷版ISSN:0139-570X
  • 电子版ISSN:1805-9295
  • 出版年度:2021
  • 卷号:67
  • 期号:5
  • 页码:200-207
  • DOI:10.17221/480/2020-AGRICECON
  • 出版社:Czech Academy of Agricultural Sciences
  • 摘要:We use chaotic artificial neural network (CANN) technology to predict the price of the most widely traded agricultural futures – soybean futures. The nonlinear existence test results show that the time series of soybean futures have multifractal dynamics, long-range dependence, self similarity, and chaos characteristics. This also provides a basis for the construction of a CANN model. Compared with the artificial neural network (ANN) structure as our benchmark system, the predictability of CANN is much higher. The ANN is based on Gaussian kernel function and is only suitable for local approximation of nonstationary signals, so it cannot approach the global nonlinear chaotical hidden pattern. Improving the prediction accuracy of soybean futures prices is of great significance for investors, soybean producers, and decision makers.
  • 关键词:artificial neural network (ANN); chaos; forecasting; long-range dependence; multifractal
国家哲学社会科学文献中心版权所有