摘要:We present an exploratory data analysis approach for finite element (FE) simulations to interactively inspect measured deviations in sheet metals arising in automotive applications. Exterior car body parts consist of large visible surfaces, and strict tolerances must be met by them to satisfy both aesthetic requirements and quality performance requirements. To fulfill quality requirements like gap and flushness, exterior vehicle components have adjustable mechanical boundaries. These boundaries are used to influence the shape and position of a sheet metal part relative to its chassis. We introduce a method that supports an inspection engineer with an interactive framework that makes possible a detailed analysis of measured sheet metal deviation fields generated from 3D scans. An engineer can interactively change boundary conditions and obtains the resulting deviation field in real-time. Thus, it is possible to determine viable and desirable adjustments efficiently, leading to time and cost savings in the assembly process.
关键词:Data Analysis; Interactive Inspection; 3D-Metrology; Finite Element Simulation