摘要:Reaction-diffusion-advection equations provide precise interpretations for many important phenomena in complex interactions between natural and artificial systems. This paper studies second-order semi-discretizations for the numerical solution of reaction-diffusion-advection equations modeling quenching types of singularities occurring in numerous applications. Our investigations particularly focus at cases where nonuniform spatial grids are utilized. Detailed derivations and analysis are accomplished. Easy-to-use and highly effective second-order schemes are acquired. Computational experiments are presented to illustrate our results as well as to demonstrate the viability and capability of the new methods for solving singular quenching problems on arbitrary grid platforms.